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Realizability of stationary spherically symmetric transonic accretion
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The spherically symmetric stationary transofBondi) flow is considered a classic example of an accretion
flow. This flow, however, is along a separatrix, which is usually not physically realizable. We demonstrate,
using a pedagogical example, that it is the dynamics which selects the transonic flow.
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In astrophysics, the importance of accretion processes can Is this a result confined to the spherically symmetric flow?
hardly be overstated, especially in the context of the study ofVe have verified, as we shall show briefly, that this holds
compact astrophysical objects and active galactic nuclei. Oflso for the axisymmetric rotating accretion flow for a thin
such processes, a very important paradigm is that of thdisc[8] which is a situation of practical interest. The tech-
steady spherically symmetric flow, in which the motion of nique for assigning the arrows remains identical to what we
the accreting matter is steady and spherically symmetricwill show for the spherically symmetric ca$e].
obeying the boundary condition that the bulk velocity fall off ~We wish to make our point with a fairly straightforward
to zero at infinity, while the density asymptotically ap- example. We consider the differential equation
proaches a fixed value. Since this is the simplest situation in
the class of accretion flows, it is the starting point in all dy f(x,y) x+y—2
relevant textd1,2]. Studied extensively, among others, by dx a(x,y) - y—x @
Bondi [3], about 50 years ago, it also gives one of the clear-
est examples of_ a transqnic flow_/ith _which, in s_pheri.cal An integral can be written down as
symmetry, Bondi’'s name is associatede., a flow in which
the velocity is subsonic far away from. the star and becqme§ x2—y2— 4x+2xy=—C, )
supersonic as the surface of the star is approached. It is this
31”;%'(';\:,:2/ ?Qg ?;;ytﬁgTﬁr?gi%?'er']tgoif;tgfenaog]eolgp%tft?a\aeri'r\]/vhereC is a constant. If we want that particular solution

: . . . which passes through the point whefigc,y)=g(x,y)=0,
practice. Accordingly, the spherically symmetric flow has o _ 7 5

oY . namelyx=y=1, thenC=2. The curvex-—y-—4x+2xy

been of continuing interedd—7]. We first argue that the ot . . i of straiaht —x(1+ 2
transonic(Bondi) solution of the steady spherically symmet- actorizes into a pair of straig Hnesy: .X( ).
ric flow would not be physically realizable. This proposition + \2=0 andy—x(:l_.— V2)—2=0. This pairis shown /ln
is in contradiction to the position of Bondi himself, that “the F19: 2 (,to be read without the arrowas the lines marked
case physically most likely to occur is that with the maxi- 21dW'. _
mum rate of accretion[3], which, in spherically symmetric Ve want to explore the process of drawu?g the cuhve
accretion, is a case that is readily identified as the transonifom @ given initial condition. On the curva’, y=0 atx
solution [4]. We then argue that it is the dynamics which =2+ V2. Let us begin with the initial conditiog=0 atx
actually selects the transonic flow from among all possible=2+ V2—¢, where 0<e<1. The given initial condition
trajectories. fixes the constan€ as C= —2[1+ \2e— €%/2]. Using this

The typical solutions for the spherically symmetric flow value of C, we can plot the curve given by E@). For a
in the velocity-coordinate space is shown in Fig(té be

read without the arrowsThe two dark solid lines labelefl v? i W
andW refer to the accretion flow, and the wind flow, respec- o ;

tively. The intersection point is an equilibrium point. The
problem with Fig. 1 is that when it is read without the arrows
it is slightly misleading. It does not show along what route

an integration ofdv/dr would proceed if we start withan | J 1/ \ ""<M

]
initial conditionv =v,,, atr =r;, far away from the star. For ; )
a physically realizable flow, an initial condition infinitesi- /‘:\ =3
mally close to a point on the accretion lidewould trace out :

A 4
a curve infinitesimally close t& and in the limit would

%
correctly reproducé, evolving along it and passing through  FiG. 1. phase trajectories for spherically symmetric accretion
the equilibrium point(sonic poinj as we integratelv/dr, onto a star. The bold solid lineg, andW, represent “accretion”
obtained from Euler’s equation. We will show that the arrowsand “wind,” respectively. The fixed point is at=r,, v%/c2=1.
on the integration route are as shown in Fig. 1. The direction.inear stability analysis indicates that the fixed point of the flow is
of the arrows indicates that the spherically symmetric trana saddle point. The direction of the arrows along the ndem-
sonic accretion flow should not be physically realizable.  onstrates that the transonic flow is not physically realizable.

-
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Y W For the spherically symmetric flow, the relevant variables

are the radial velocity and the local density. Ignoring
\ viscosity, we write down Euler’s equation foras
(1.1)
X Jv N dv 10P aV(r) ®
0 Ty T T T T T '
y S ot Cor por ar

whereP is the local pressure andis the potential due to a

gravitating body of masM, i.e.,V=—-GM/r. The pressure
FIG. 2. Integration of Eq(1) gives a pair of straight lines, with |s_relat$d to the I_ocal density through the5 equatl_on of state

the integration constant fixed by the intersection point (1,1). In the” =~ Kp” whereK is a constant, and<y<3, y being the
figure the lines are marke&’ andW'. Parametrizing Eq1) as Eq.  'atio of the specific heats at constant pressure and constant
(5), we get the concept of arrows. Linear stability analysis indicates/0lume. The local density evolves according to the equation
that forA’ andW’, the intersection point (1,1) is actually a saddle Of continuity,
point, for which the arrows are as shown above.

. . . —+
givenx, y is given by the relevant root of the quadratic equa- t oy
tion thus obtained. The two roots are

%2 pro)=0. @

J
ar
The stationary solution impliegv/dt=dp/dt=0. The local
y=x*2[(x—1)%+ 2e— €2/2]"2 (3)  sound speed is given by?=dP/dp=yKp? ! and in the

stationary situation, we can use Ed) to write Eq.(6) as

Clearly, to satisfyy=0 atx=2+2—e¢, the negative sign
has to be chosen in E3), and we have ( 2_G_M>
2 2 | 2¢5

dv 2v r
y=X—2[(Xx—1)2+ \2e— €/2]"2 (4) T e ®)

At x=0, y=—2(1+2e— €%/2)"2 very different fromy  |ntegration of the equation with different initial conditions is
=2, which one gets on the curv&’. In the limit of €  supposed to generate the curves in Fig. 1. To assign arrows
—0, one generates a part &f (x=1) and a part oW’ we write Eq.(8) in the parametrized form

(x=1), instead of the curvA’. Another way of stating this

is the sensitivity to initial conditions in the drawing Af . If d02_2 2| 52 GM

we make an error of an infinitesimal amounin prescribing dr VST )

the initial condition onA’, i.e., we prescribgg=0 atx=2

+2—¢€ instead ofy=0 atx=2+2, then the “error” dr » 2

made atx=0 relative toA’ is 242 which is O(1). An a; - rcs). ©)

infinitesimal separation at one point leads to a finite separa-

tion at a point a short distance away. This is what we mean The fixed point is at =ry, v=vy such thatv§=c§0 and

by saying that the curvA’ (and similarlyW") should not be 2roc§0=GM. It is immediately clear that the fixed point is

physically realized. the so called sonic point. We now carry out a linear stability
The clearest and most direct understanding of the diffianalysis around the fixed point by writing?=uv3(1+ 6;)

culty is achieved by writing Eq(l) as the two differential andr=rq(1+ 5,) and linearizing ind; and ,. Straightfor-

equations ward algebra yields
dy d51 2
4, Xty=2, 7~ 2ol (y=1)a1+(6—47) 8],
dx d52 2 ’y+l

. A .
where is some convenient parametrization. The fixed point '€ Solutions fors, , are of the forme™”, where is to be
found from the roots of

of this dynamical system is (1,1), namely the point where
f(x,y) and g(x,y) are simultaneously zero—the point
through whichA’” andW’ pass. Linear stability analysis of
this fixed point shows that it is a saddle. The trajectories in Det  y+1 , A—2(y—1)c2
this y—x space can now be drawn with arrows and the result T G0 Y S0
is as shown in Fig. 2. The distribution of the arroggeculiar

to a saddl[10] implies A’ and W’ cannot be physically The eigenvalues are found to he=+c2,\2(5—37). For
realized. y<3, the fixed point is a saddle. Since the physical situa-

N+2(y—1)ck  2(4y—6)ch
=0. (11
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tions are restricted to this range, we find that the fixed pointhem to be stable. We will now show that the dynamics ac-
is always a saddle and hence the distribution of arrows wiltually preferentially selects the separatrices.
be as in Fig. 1. The general solution of Eq10) can be obtained by the

For the more realistic axisymmetric flow, usifgas the  method of characteristid4.2]. The two independent charac-
radial distance in the plane, the static equations of flow foteristic curves of Eq(10) are obtained from
an angular velocity() are (the equation of continuity is
pRHv=const, whereH is the disk thicknegs at_ dx  dy (16)

1 y—x y+x=2°

momentum balance,

They are
& arr-202-29P. 12 2 2
ar K~ 5 dR’ (12) y2—2xy—x2+4x=C,
angular momentum balance, (x— 1ti(y—x)) OB an
2
d 5 d [ apc?R3H dQ
vag(QRY) = PRHAR. O, dR)’ (13)  The latter is obtained by integratirdx/dt=y—x using the

first integral.
With the choice of the upper sign, the solutions of Eg.

where Q2=GM/R® and « is the effective viscosity of )
(10) can be written as

Shakura and Sunyaep8]. An integral of motion follows
from Eq. (13) and we can obtain an equation fdv?/dR
akin to Eq.(8), which we can write as the dynamical system  y2_oyy_x24 45—

(x—1+ %(y—x)) e 2

2 2
O(Ijizzvz 1 > —(Qﬁ—QZ)Rz), 18
T ty wheref is an arbitrary function. The functiohis determined
) by the initial conditions. In this case we choose the initial
drR _ Rl w2 2¢g (14 condition thaty(x)=0 at t=0 for all x. This leads to
dr Y 14y f[x(1—1/y2)—1]= —x2+4x and yields
An analysis identical to the one following E(@) leads to the f(z=AZ+Bz+C, (19

eigenvalues\ of the stability matrix which can easily be
shown to be appropriate for a sadf@fs.
We now focus on the fact that the real physical problem is 5 4
dynamic as exhibited in Eq$6) and (7) and what we have A=— B=— C=2. (20)
tacitly assumed is that we can directly look at the stationary (V2—-1)%' J2-1’
solutionov (r). As it turns out there are an infinite number of
stationary solutions and if the static limit is taken directly, it With the initial conditiony(x)=0 att=0, the solution to
is the Bondi solution which is very sensitive to the process offd- (10) reads
integration which determines the stationary trajectory. Sev-
eral studies of the linear stability analysis of the stationary [y=x(+2+1)+2][y+x(y2—1)= 2]
flows that have been carried out in the past have not really _ -2t 2,-2V2t
helped clarify the situation as it was finally established that Boe T +Ag%e ' @D

among the stationary solutions, the transonic Bondi solutioRynere b=d(x,y)=x(1—12)—1+y/\2. Clearly ast
as well as all the subsonic solutions are stable in the Iinear_m, the right hand side tends to zero and we approach one
stability sensé4,1_1]. Any selection mechanism then must be ¢ the two separatrices shown in Fig. 2. Of the two possible
of a nonperturbative nature. _ separatrices, the one which will be relevant will be deter-
Accordingly, we return to our pedagogic example of EQ. mined by some other requirement. For the astrophysical flow
(1) but now considey as a fieldy(x,t) with the evolution  he two separatrices are the Bondi flow and the wind solu-
tion. One chooses the proper sign of the velocity to get the
8—y+(y—x)&—y=y+x—2. (15) flow which one_is interested in. _ o
ot X The mechanism for the selection of the asymptotes in Fig.
1 as the favored trajectories is identical. This can be appre-
The stationary solutiogig(x) satisfies Eq(1) and the discus- ciated from a look at Eq6). If the pressure term is ignored,
sion that follows Eq.(1) is valid for yo(x). The stationary we have a set of stationary solutiong/2—GM/r=C.
solutionsyy(x) are as shown in Fig2) and the separatrices Which of these would be selected by the dynamics? If we
areyo(x)=x(1+2)— 2 andy,(x)=—x(y2—1)+ 2. It  start fromv=0 att=0 for allr, an identical reasoning to the
is easy to see that a linear stability analysis around the familgne given above shows that it is the path witk 0 which is
of stationary solutiong/y(x) shows an infinite number of selected.

where
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The selection ofc=0 for this case is dynamic in origin. justification for Bondi’s assertion that the energy criterion

The asymptotic solution of the differential equatian
+v(dvldr)=—GMIr? by the method of characteristics

yields path (gravity always wins for smali). We note in passing

5 ary path is power-law-like. This brings in interesting issues
v GM B GM 22) like long time tails which are characteristic of various non-
equlibrium phenomena in statistical physics.

2 r  r—ot

should select the stationary flow. With the pressure term in-
cluded, this argument leads to the selection of the transonic

the interesting fact that the temporal approach to the station-
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