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Realizability of stationary spherically symmetric transonic accretion
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The spherically symmetric stationary transonic~Bondi! flow is considered a classic example of an accretion
flow. This flow, however, is along a separatrix, which is usually not physically realizable. We demonstrate,
using a pedagogical example, that it is the dynamics which selects the transonic flow.
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In astrophysics, the importance of accretion processes
hardly be overstated, especially in the context of the stud
compact astrophysical objects and active galactic nuclei
such processes, a very important paradigm is that of
steady spherically symmetric flow, in which the motion
the accreting matter is steady and spherically symme
obeying the boundary condition that the bulk velocity fall o
to zero at infinity, while the density asymptotically a
proaches a fixed value. Since this is the simplest situatio
the class of accretion flows, it is the starting point in
relevant texts@1,2#. Studied extensively, among others, b
Bondi @3#, about 50 years ago, it also gives one of the cle
est examples of a transonic flow~with which, in spherical
symmetry, Bondi’s name is associated!, i.e., a flow in which
the velocity is subsonic far away from the star and becom
supersonic as the surface of the star is approached. It is
simplicity and easy comprehensibility of the model that ov
shadows the fact that it is not encountered most often
practice. Accordingly, the spherically symmetric flow h
been of continuing interest@4–7#. We first argue that the
transonic~Bondi! solution of the steady spherically symme
ric flow would not be physically realizable. This propositio
is in contradiction to the position of Bondi himself, that ‘‘th
case physically most likely to occur is that with the ma
mum rate of accretion’’@3#, which, in spherically symmetric
accretion, is a case that is readily identified as the trans
solution @4#. We then argue that it is the dynamics whic
actually selects the transonic flow from among all possi
trajectories.

The typical solutions for the spherically symmetric flo
in the velocity-coordinate space is shown in Fig. 1~to be
read without the arrows!. The two dark solid lines labeledA
andW refer to the accretion flow, and the wind flow, respe
tively. The intersection point is an equilibrium point. Th
problem with Fig. 1 is that when it is read without the arrow
it is slightly misleading. It does not show along what rou
an integration ofdv/dr would proceed if we start with an
initial condition v5v in at r 5r in far away from the star. Fo
a physically realizable flow, an initial condition infinites
mally close to a point on the accretion lineA would trace out
a curve infinitesimally close toA and in the limit would
correctly reproduceA, evolving along it and passing throug
the equilibrium point~sonic point! as we integratedv/dr,
obtained from Euler’s equation. We will show that the arro
on the integration route are as shown in Fig. 1. The direc
of the arrows indicates that the spherically symmetric tr
sonic accretion flow should not be physically realizable.
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Is this a result confined to the spherically symmetric flo
We have verified, as we shall show briefly, that this ho
also for the axisymmetric rotating accretion flow for a th
disc @8# which is a situation of practical interest. The tec
nique for assigning the arrows remains identical to what
will show for the spherically symmetric case@9#.

We wish to make our point with a fairly straightforwar
example. We consider the differential equation

dy

dx
5

f ~x,y!

g~x,y!
5

x1y22

y2x
. ~1!

An integral can be written down as

x22y224x12xy52C, ~2!

where C is a constant. If we want that particular solutio
which passes through the point wheref (x,y)5g(x,y)50,
namelyx5y51, thenC52. The curvex22y224x12xy
522 factorizes into a pair of straight lines :y2x(11A2)
1A250 andy2x(12A2)2A250. This pair is shown in
Fig. 2 ~to be read without the arrows! as the lines markedA8
andW8.

We want to explore the process of drawing the curveA8
from a given initial condition. On the curveA8, y50 at x
521A2. Let us begin with the initial conditiony50 at x
521A22e, where 0,e!1. The given initial condition
fixes the constantC as C522@11A2e2e2/2#. Using this
value of C, we can plot the curve given by Eq.~2!. For a

FIG. 1. Phase trajectories for spherically symmetric accret
onto a star. The bold solid lines,A and W, represent ‘‘accretion’’
and ‘‘wind,’’ respectively. The fixed point is atr 5r 0 , v2/cs

251.
Linear stability analysis indicates that the fixed point of the flow
a saddle point. The direction of the arrows along the lineA dem-
onstrates that the transonic flow is not physically realizable.
©2002 The American Physical Society03-1
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givenx, y is given by the relevant root of the quadratic equ
tion thus obtained. The two roots are

y5x6A2@~x21!21A2e2e2/2#1/2. ~3!

Clearly, to satisfyy50 at x521A22e, the negative sign
has to be chosen in Eq.~3!, and we have

y5x2A2@~x21!21A2e2e2/2#1/2. ~4!

At x50, y52A2(11A2e2e2/2)1/2, very different fromy
5A2, which one gets on the curveA8. In the limit of e
→0, one generates a part ofA8 (x>1) and a part ofW8
(x<1), instead of the curveA8. Another way of stating this
is the sensitivity to initial conditions in the drawing ofA8. If
we make an error of an infinitesimal amounte in prescribing
the initial condition onA8, i.e., we prescribey50 at x52
1A22e instead ofy50 at x521A2, then the ‘‘error’’
made atx50 relative to A8 is 2A2 which is O(1). An
infinitesimal separation at one point leads to a finite sep
tion at a point a short distance away. This is what we m
by saying that the curveA8 ~and similarlyW8) should not be
physically realized.

The clearest and most direct understanding of the d
culty is achieved by writing Eq.~1! as the two differential
equations

dy

dt
5x1y22,

dx

dt
5y2x, ~5!

wheret is some convenient parametrization. The fixed po
of this dynamical system is (1,1), namely the point whe
f (x,y) and g(x,y) are simultaneously zero—the poin
through whichA8 andW8 pass. Linear stability analysis o
this fixed point shows that it is a saddle. The trajectories
this y2x space can now be drawn with arrows and the re
is as shown in Fig. 2. The distribution of the arrows~peculiar
to a saddle! @10# implies A8 and W8 cannot be physically
realized.

FIG. 2. Integration of Eq.~1! gives a pair of straight lines, with
the integration constant fixed by the intersection point (1,1). In
figure the lines are markedA8 andW8. Parametrizing Eq.~1! as Eq.
~5!, we get the concept of arrows. Linear stability analysis indica
that forA8 andW8, the intersection point (1,1) is actually a sadd
point, for which the arrows are as shown above.
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For the spherically symmetric flow, the relevant variab
are the radial velocityv and the local densityr. Ignoring
viscosity, we write down Euler’s equation forv as

]v
]t

1v
]v
]r

52
1

r

]P

]r
2

]V~r !

]r
, ~6!

whereP is the local pressure andV is the potential due to a
gravitating body of massM, i.e., V52GM/r . The pressure
is related to the local density through the equation of st
P5Krg whereK is a constant, and 1,g, 5

3 , g being the
ratio of the specific heats at constant pressure and con
volume. The local density evolves according to the equat
of continuity,

]r

]t
1

1

r 2

]

]r
~rr 2v !50. ~7!

The stationary solution implies]v/]t5]r/]t50. The local
sound speed is given bycs

25]P/]r5gKrg21 and in the
stationary situation, we can use Eq.~7! to write Eq.~6! as

dv2

dr
5

2v2

r

S 2cs
22

GM

r D
v22cs

2
. ~8!

Integration of the equation with different initial conditions
supposed to generate the curves in Fig. 1. To assign arr
we write Eq.~8! in the parametrized form

dv2

dt
52v2S 2cs

22
GM

r D ,

dr

dt
5r ~v22cs

2!. ~9!

The fixed point is atr 5r 0 , v5v0 such thatv0
25cs0

2 and
2r 0cs0

2 5GM. It is immediately clear that the fixed point i
the so called sonic point. We now carry out a linear stabi
analysis around the fixed point by writingv25v0

2(11d1)
and r 5r 0(11d2) and linearizing ind1 andd2. Straightfor-
ward algebra yields

dd1

dt
52cs0

2 @2~g21!d11~624g!d2#,

dd2

dt
5cs0

2 S g11

2
d112~g21!d2D . ~10!

The solutions ford1,2 are of the formelt, wherel is to be
found from the roots of

DetS l12~g21!cs0
2 2~4g26!cs0

2

2
g11

2
cs0

2 l22~g21!cs0
2 D 50. ~11!

The eigenvalues are found to bel56cs0
2 A2(523g). For

g, 5
3 , the fixed point is a saddle. Since the physical situ
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tions are restricted to this range, we find that the fixed po
is always a saddle and hence the distribution of arrows
be as in Fig. 1.

For the more realistic axisymmetric flow, usingR as the
radial distance in the plane, the static equations of flow
an angular velocityV are ~the equation of continuity is
rRHv5const, whereH is the disk thickness!:

momentum balance,

dv2

dR
52V2R22VK

2 2
2

r

dP

dR
; ~12!

angular momentum balance,

v
d

dR
~VR2!5

1

rRH

d

dRS arcs
2R3H

VK

dV

dRD , ~13!

where VK
2 5GM/R3 and a is the effective viscosity of

Shakura and Sunyaev@8#. An integral of motion follows
from Eq. ~13! and we can obtain an equation fordv2/dR
akin to Eq.~8!, which we can write as the dynamical syste

dv2

dt
52v2S 5cs

2

11g
2~VK

2 2V2!R2D ,

dR

dt
5RS v22

2cs
2

11g D . ~14!

An analysis identical to the one following Eq.~9! leads to the
eigenvaluesl of the stability matrix which can easily b
shown to be appropriate for a saddle@9#.

We now focus on the fact that the real physical problem
dynamic as exhibited in Eqs.~6! and ~7! and what we have
tacitly assumed is that we can directly look at the station
solutionv(r ). As it turns out there are an infinite number
stationary solutions and if the static limit is taken directly,
is the Bondi solution which is very sensitive to the process
integration which determines the stationary trajectory. S
eral studies of the linear stability analysis of the station
flows that have been carried out in the past have not re
helped clarify the situation as it was finally established t
among the stationary solutions, the transonic Bondi solu
as well as all the subsonic solutions are stable in the lin
stability sense@4,11#. Any selection mechanism then must b
of a nonperturbative nature.

Accordingly, we return to our pedagogic example of E
~1! but now considery as a fieldy(x,t) with the evolution

]y

]t
1~y2x!

]y

]x
5y1x22. ~15!

The stationary solutiony0(x) satisfies Eq.~1! and the discus-
sion that follows Eq.~1! is valid for y0(x). The stationary
solutionsy0(x) are as shown in Fig.~2! and the separatrice
arey0(x)5x(11A2)2A2 andy0(x)52x(A221)1A2. It
is easy to see that a linear stability analysis around the fam
of stationary solutionsy0(x) shows an infinite number o
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them to be stable. We will now show that the dynamics
tually preferentially selects the separatrices.

The general solution of Eq.~10! can be obtained by the
method of characteristics@12#. The two independent charac
teristic curves of Eq.~10! are obtained from

dt

1
5

dx

y2x
5

dy

y1x22
. ~16!

They are

y222xy2x214x5C,

S x216
1

A2
~y2x!D e7A2t5C̃. ~17!

The latter is obtained by integratingdx/dt5y2x using the
first integral.

With the choice of the upper sign, the solutions of E
~10! can be written as

y222xy2x214x5 f F S x211
1

A2
~y2x!D e2A2tG ,

~18!

wheref is an arbitrary function. The functionf is determined
by the initial conditions. In this case we choose the init
condition that y(x)50 at t50 for all x. This leads to
f @x(121/A2)21#52x214x and yields

f ~z!5Az21Bz1C, ~19!

where

A52
2

~A221!2
,B52

4

A221
, C52. ~20!

With the initial conditiony(x)50 at t50, the solution to
Eq. ~10! reads

@y2x~A211!1A2#@y1x~A221!2A2#

5Bfe2A2t1Af2e22A2t, ~21!

where f[f(x,y)5x(121/A2)211y/A2. Clearly as t
→`, the right hand side tends to zero and we approach
of the two separatrices shown in Fig. 2. Of the two possi
separatrices, the one which will be relevant will be det
mined by some other requirement. For the astrophysical fl
the two separatrices are the Bondi flow and the wind so
tion. One chooses the proper sign of the velocity to get
flow which one is interested in.

The mechanism for the selection of the asymptotes in F
1 as the favored trajectories is identical. This can be app
ciated from a look at Eq.~6!. If the pressure term is ignored
we have a set of stationary solutionsv2/22GM/r 5C.
Which of these would be selected by the dynamics? If
start fromv50 at t50 for all r, an identical reasoning to th
one given above shows that it is the path withC50 which is
selected.
3-3
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The selection ofC50 for this case is dynamic in origin
The asymptotic solution of the differential equationv̇
1v(]v/]r )52GM/r 2 by the method of characteristic
yields

v2

2
2

GM

r
5 2

GM

r 2vt
~22!

which for t→` goes to the static solutionv2/25GM/r . This
is also the choice according to the energy criterion. Co
sponding to the initial condition given, the lowest possib
total energy isE5v2/22GM/r 50 and the dynamics selec
this particular stationary trajectory. The dynamic solution
nonperturbative in character and provides the mathema
s

d

on
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justification for Bondi’s assertion that the energy criteri
should select the stationary flow. With the pressure term
cluded, this argument leads to the selection of the transo
path ~gravity always wins for smallr ). We note in passing
the interesting fact that the temporal approach to the stat
ary path is power-law-like. This brings in interesting issu
like long time tails which are characteristic of various no
equlibrium phenomena in statistical physics.
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